Wednesday, February 25, 2015

Big Data and Hadoop

Hadoop

Following are some Big Data tools and topics-

Big Data:
Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate. Challenges include analysis, capture, curation, search, sharing, storage, transfer, visualization, and information privacy. The term often refers simply to the use of predictive analytics or other certain advanced methods to extract value from data, and seldom to a particular size of data set.
source: http://en.wikipedia.org

Apache Hadoop

The Apache™ Hadoop® project develops open-source software for reliable, scalable, distributed computing.
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.
The project includes these modules:
  • Hadoop Common: The common utilities that support the other Hadoop modules.
  • Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.
  • Hadoop YARN: A framework for job scheduling and cluster resource management.
  • Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.
Other Hadoop-related projects at Apache include:
  • Ambari™: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard for viewing cluster health such as heatmaps and ability to view MapReduce, Pig and Hive applications visually alongwith features to diagnose their performance characteristics in a user-friendly manner.
  • Avro™: A data serialization system.
  • Cassandra™: A scalable multi-master database with no single points of failure.
  • Chukwa™: A data collection system for managing large distributed systems.
  • HBase™: A scalable, distributed database that supports structured data storage for large tables.
  • Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.
  • Mahout™: A Scalable machine learning and data mining library.
  • Pig™: A high-level data-flow language and execution framework for parallel computation.
  • Spark™: A fast and general compute engine for Hadoop data. Spark provides a simple and expressive programming model that supports a wide range of applications, including ETL, machine learning, stream processing, and graph computation.
  • Tez™: A generalized data-flow programming framework, built on Hadoop YARN, which provides a powerful and flexible engine to execute an arbitrary DAG of tasks to process data for both batch and interactive use-cases. Tez is being adopted by Hive™, Pig™ and other frameworks in the Hadoop ecosystem, and also by other commercial software (e.g. ETL tools), to replace Hadoop™ MapReduce as the underlying execution engine.
  • ZooKeeper™: A high-performance coordination service for distributed applications.

HBase

Apache HBase is the Hadoop database, a distributed, scalable, big data store.

When Would I Use Apache HBase?

Use Apache HBase when you need random, realtime read/write access to your Big Data. This project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, Apache HBase provides Bigtable-like capabilities on top of Hadoop and HDFS.

Features

  • Linear and modular scalability.
  • Strictly consistent reads and writes.
  • Automatic and configurable sharding of tables
  • Automatic failover support between RegionServers.
  • Convenient base classes for backing Hadoop MapReduce jobs with Apache HBase tables.
  • Easy to use Java API for client access.
  • Block cache and Bloom Filters for real-time queries.
  • Query predicate push down via server side Filters
  • Thrift gateway and a REST-ful Web service that supports XML, Protobuf, and binary data encoding options
  • Extensible jruby-based (JIRB) shell
  • Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via JMX
source: http://hbase.apache.org

Hive

The Apache Hive ™ data warehouse software facilitates querying and managing large datasets residing in distributed storage. Hive provides a mechanism to project structure onto this data and query the data using a SQL-like language called HiveQL. At the same time this language also allows traditional map/reduce programmers to plug in their custom mappers and reducers when it is inconvenient or inefficient to express this logic in HiveQL.

source: https://hive.apache.org


Apache Pig


Apache Pig is a platform for analyzing large data sets that consists of a high-level language for expressing data analysis programs, coupled with infrastructure for evaluating these programs. The salient property of Pig programs is that their structure is amenable to substantial parallelization, which in turns enables them to handle very large data sets.
At the present time, Pig's infrastructure layer consists of a compiler that produces sequences of Map-Reduce programs, for which large-scale parallel implementations already exist (e.g., the Hadoop subproject). Pig's language layer currently consists of a textual language called Pig Latin, which has the following key properties:
  • Ease of programming. It is trivial to achieve parallel execution of simple, "embarrassingly parallel" data analysis tasks. Complex tasks comprised of multiple interrelated data transformations are explicitly encoded as data flow sequences, making them easy to write, understand, and maintain.
  • Optimization opportunities. The way in which tasks are encoded permits the system to optimize their execution automatically, allowing the user to focus on semantics rather than efficiency.
  • Extensibility. Users can create their own functions to do special-purpose processing.

Apache Sqoop Sqoop

Apache Sqoop(TM) is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases.
Sqoop successfully graduated from the Incubator in March of 2012 and is now a Top-Level Apache project

YARN:


MapReduce has undergone a complete overhaul in hadoop-0.23 and we now have, what we call, MapReduce 2.0 (MRv2) or YARN.

The fundamental idea of MRv2 is to split up the two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a DAG of jobs.

The ResourceManager and per-node slave, the NodeManager (NM), form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system.

The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.


MapReduce
Hadoop MapReduce is a software framework for easily writing applications which process vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner.
A MapReduce job usually splits the input data-set into independent chunks which are processed by the map tasks in a completely parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. Typically both the input and the output of the job are stored in a file-system. The framework takes care of scheduling tasks, monitoring them and re-executes the failed tasks.
Typically the compute nodes and the storage nodes are the same, that is, the MapReduce framework and the Hadoop Distributed File System (see HDFS Architecture Guide) are running on the same set of nodes. This configuration allows the framework to effectively schedule tasks on the nodes where data is already present, resulting in very high aggregate bandwidth across the cluster.
The MapReduce framework consists of a single master JobTracker and one slave TaskTracker per cluster-node. The master is responsible for scheduling the jobs' component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves execute the tasks as directed by the master.
Minimally, applications specify the input/output locations and supply map and reduce functions via implementations of appropriate interfaces and/or abstract-classes. These, and other job parameters, comprise the job configuration. The Hadoop job client then submits the job (jar/executable etc.) and configuration to the JobTracker which then assumes the responsibility of distributing the software/configuration to the slaves, scheduling tasks and monitoring them, providing status and diagnostic information to the job-client.
Although the Hadoop framework is implemented in JavaTM, MapReduce applications need not be written in Java.
source: http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#Overview

HDFS
The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant. HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high throughput access to application data and is suitable for applications that have large data sets. HDFS relaxes a few POSIX requirements to enable streaming access to file system data. HDFS was originally built as infrastructure for the Apache Nutch web search engine project. HDFS is now an Apache Hadoop subproject.
source: http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction


MapR
MapR is a complete enterprise-grade distribution for Apache Hadoop. The MapR Distribution for Apache Hadoop has been engineered to improve Hadoop’s reliability, performance, and ease of use. The MapR distribution provides a full Hadoop stack that includes the MapR File System (MapR-FS), MapReduce, a complete Hadoop ecosystem, and the MapR Control System user interface. You can use MapR with Apache Hadoop, HDFS, and MapReduce APIs.
The following image displays a high-level view of the MapR Distribution for Apache Hadoop:

source: http://doc.mapr.com/display/MapR/MapR+Overview

MapR NFS

MapR NFS: A radically simpler way to get your data out of a Hadoop cluster.

Cluster
In a computer system, a cluster is a group of servers and other resources that act like a single system and enable high availability and, in some cases, load balancing and parallel processing

Hadoop cluster
A Hadoop cluster is a special type of computational cluster designed specifically for storing and analyzing huge amounts of unstructured data in a distributed computing environment.


No comments:

Post a Comment